Different doses of ovalbumin exposure on dendritic cells determine their genetic/epigenetic regulation and T cell differentiation
Author(s) -
Ying Wang,
Zizhong Yu,
Yue Zhou,
Yun Zhu,
Jinhui Wang,
Junmei Fu,
Yang Yuan,
Shan Chen,
Yanjun Wang,
Wenting Yu,
Pei Gao,
Wanting Zhu,
Qing Cheng,
Seong Cho,
Weijia Kong,
Jianjun Chen
Publication year - 2020
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.104145
Subject(s) - epigenetics , ovalbumin , chen , biology , microbiology and biotechnology , genetics , gene , antigen , paleontology
It has been reported that allergen dosage can impact the differentiation of dendritic cells (DCs)-mediated T cells. However, the mechanisms of such dose-dependent differentiation are poorly understood. In this study, bone marrow-derived immature DCs stimulated with Ovalbumin (OVA) of different concentrations (0, 10, 100, 1000, 10000μg/ml, respectively). DCs were then co-cultured with naïve T cells. RNA-sequencing detection and DNA methylation of DCs were performed. We show that when DCs were stimulated with low-dose (10μg/ml), 77 genes were up-regulated and 87 genes down-regulated. Most activated genes were related to ribosome synthesis and ion channel inhibition. At the medium-dose (100μg/ml), 339 genes were up-regulated and 168 genes down-regulated. Most activated genes involved cytokine synthesis and regulation of immune responses. At high-dose (10000μg/ml), 2497 genes were up-regulated and 1156 genes down-regulated. TNF signaling pathway, NF-kappa B signaling pathway, antigen processing and presentation signaling pathway were mostly up-regulated. The related co-stimulators, co-inhibitory molecules, inhibitory cytokines, negative regulating enzymes were highly expressed. The monocarbate, coenzyme, fatty acid, glucolipid, starch, sucrose and other metabolism-related signaling pathways were down-regulated. The profiles of DNA methylation and RNA synthesis of DCs varied with different doses of OVA, which serves to induce T cells to differentiate in various directions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom