Comprehensive circular RNA expression profiling constructs a ceRNA network and identifies hsa_circ_0000673 as a novel oncogene in distal cholangiocarcinoma
Author(s) -
Xin Zhao,
Xinxue Zhang,
Zhigang Zhang,
Zhe Liu,
Jiqiao Zhu,
Shaocheng Lyu,
Lixin Li,
Ren Lang,
Qiang He
Publication year - 2020
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.104099
Subject(s) - competing endogenous rna , circular rna , profiling (computer programming) , oncogene , computational biology , biology , gene expression profiling , microrna , rna , cancer research , gene expression , genetics , gene , computer science , long non coding rna , cell cycle , operating system
Circular RNAs (circRNAs) play an important role in cholangiocarcinoma (CCA) development; however, the expression and functions of circRNAs in distal CCA (dCCA) remain unknown. Herein, we explored the expression profile of circRNAs in six paired dCCA tumor and adjacent normal tissue samples using microarray. A total of 171 differentially expressed (DE) circRNAs were identified in dCCA tissues. Host genes of DE circRNAs were enriched in the cellular cytoskeleton and adheren junction. Bioinformatics analyses were used to establish a circRNA-microRNA-mRNA network for dCCA. Protein-protein interaction networks were constructed, and five hub genes were associated with the regulation of the cell cycle based on gene set enrichment analyses. Five DE circRNAs were validated with qRT-PCR in 40 pairs of dCCA tissues, and hsa_circ_0000673 showed promising diagnostic performance in distinguishing dCCA from normal tissues (AUC = 0.85, p < 0.01). Overexpression of hsa_circ_0000673 was associated with tumor invasion ( p = 0.001), poor differentiation ( p = 0.041), and residual tumor ( p = 0.044). In vitro experiments indicated that inhibition of hsa_circ_0000673 suppressed the proliferation, migration, and invasion of CCA cells. This research provided a landscape of dysregulated circRNAs in dCCA and identified hsa_circ_0000673 as a potential biomarker and therapeutic target for dCCA.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom