Apigenin-7-O-β-D-(-6”-p-coumaroyl)-glucopyranoside treatment elicits a neuroprotective effect through GSK-3β phosphorylation-mediated Nrf2 activation
Author(s) -
Jingwen Wang,
Shiquan Wang,
Sisi Sun,
Yunyang Lu,
Kai Gao,
Chao Guo,
Ruili Li,
Weiwei Li,
Xian Zhao,
Haifeng Tang,
Aidong Wen,
Min Cai,
Wei Zhang
Publication year - 2020
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.104050
Subject(s) - neuroprotection , apigenin , phosphorylation , chemistry , pharmacology , stereochemistry , medicine , biochemistry , flavonoid , antioxidant
The current study was designed to seek the role of the glycogen synthase kinase-3β (GSK-β)-regulated NF-E2-related factor 2 (Nrf2) pathway in the antioxidant effect induced by Apigenin-7-O-β-D-(-6"-p-coumaroyl)-glucopyranoside (APG). Rat primary cultured cortical neurons were challenged by oxygen and glucose deprivation/reoxygenation (OGD/R) and then treated with APG. Cell viability, phosphorylation of GSK-β at Ser9 and nuclear expression of Nrf2 were measured. Male Sprague Dawley rats challenged by 2-h middle cerebral artery occlusion were treated with 50 mg/kg APG, and the neurological score, infarct volume, phosphorylation of GSK-3β and nuclear expression of Nrf2 were analyzed. The neuroprotective effect of APG and the expression levels of antioxidant enzymes and oxidative products were also examined in the presence and absence of Nrf2-siRNA and PI3K inhibitors. APG reduced the apoptotic proportion, attenuated LDH release and increased cell viability, and in vivo, APG improved neurological scores and reduced infarct volume. APG increased GSK-3β phosphorylation and Nrf2 nuclear translocation, while these effects were prevented by PI3K inhibitors or Nrf2-siRNA treatment in both OGD/R cell cultures and ischemic/reperfusion rats. These findings reveal that GSK-3β phosphorylation-mediated Nrf2 activation is involved in the neuroprotective effect of APG.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom