z-logo
open-access-imgOpen Access
Different polymorphisms in HIF-1α may exhibit different effects on cancer risk in Asians: evidence from nearly forty thousand participants
Author(s) -
Yichen Liu,
Xiaoqi Zhu,
Xiaoyi Zhou,
Jingwen Cheng,
Xiaoyu Fu,
Jingsheng Xu,
Yuya Wang,
Yueping Zhong,
Minjie Chu
Publication year - 2020
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.103871
Subject(s) - medicine , oncology , demography , sociology
The effect of different SNPs in HIF-1α and cancer susceptibility remain indistinct. Here, we evaluated the association between all identified SNPs (rs11549465, rs11549467 and rs2057482) in HIF-1α and the overall risk of cancer in all case-control studies published before April 2020. A total of 54 articles including 56 case-control studies were included in this analysis. We found that variant genotypes of rs11549465 and rs11549467 were associated with a significantly increased overall cancer risk. In contrast, the variant T allele of rs2057482 showed a significantly reduced risk of overall cancer. In addition, variant genotypes of the three studied SNPs exhibited a significant association with cancer risk in Asians and specific cancer types. Meanwhile, HIF-1α was significantly highly expressed in head and neck squamous cell carcinoma and pancreatic cancer tissues. More importantly, survival analysis indicated that the high expression of HIF-1α was associated with a poor survival in patients with lung cancer. These findings further provided evidence that different SNPs in HIF-1α may exhibit different effects on overall cancer risk; these effects were ethnicity and type-specific. Further studies with functional evaluations are required to confirm the biological mechanisms underlying the role of HIF-1α SNPs in cancer development and progression.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom