z-logo
open-access-imgOpen Access
Inverse relationship between leukocyte telomere length attrition and blood mitochondrial DNA content loss over time
Author(s) -
Anthony Y.Y. Hsieh,
Elana R. Kimmel,
Neora Pick,
Laura Sauvé,
Jason Brophy,
Fatima Kakkar,
Ari Bitnun,
Melanie Murray,
Hélène C. F. Côté
Publication year - 2020
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.103703
Subject(s) - telomere , attrition , mitochondrial dna , dna , biology , genetics , computational biology , medicine , gene , dentistry
Leukocyte telomere length (LTL) and whole blood mitochondrial DNA (WB mtDNA) content are aging markers impacted by chronic diseases such as human immunodeficiency virus (HIV) infection. We characterized the relationship between these two markers in 312 women ≥12 years of age living with HIV and 300 HIV-negative controls. We found no relationship between the two markers cross-sectionally. In multivariable models, age, ethnicity, HIV, and tobacco smoking were independently associated with shorter LTL, and the former three with lower WB mtDNA. Longitudinally, among a subgroup of 228 HIV participants and 68 HIV-negative controls with ≥2 biospecimens ≥1 year apart, an inverted pattern was observed between the rates of change in LTL and WB mtDNA content per year, whereby faster decline of one was associated with the preservation of the other. Furthermore, if HIV viral control was not maintained between visits, increased rates of both LTL attrition and WB mtDNA loss were observed. We describe a novel relationship between two established aging markers, whereby rates of change in LTL and WB mtDNA are inversely related. Our findings highlight the importance of maintaining HIV viral control, the complementary longitudinal relationship between the two markers, and the need to consider both in aging studies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom