Transcriptomic analysis reveals gender differences in gene expression profiling of the hypothalamus of rhesus macaque with aging
Author(s) -
Yong Fan,
Congru Li,
Wendi Pei,
Tao Tan,
Rong Li,
Jie Qiao,
Yang Yu
Publication year - 2020
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.103682
Subject(s) - transcriptome , biology , hypothalamus , gene expression , housekeeping gene , hormone , gene , rhesus macaque , gene expression profiling , medicine , hypothalamic–pituitary–gonadal axis , endocrinology , macaque , genetics , neuroscience , luteinizing hormone
Due to the current delay in childbearing, the importance of elucidating the underlying mechanisms for reproductive aging has increased. Human fertility is considered to be controlled by hormones secreted by the hypothalamic-pituitary-gonadal axis. To clarify the changes in hypothalamic gene expression with increasing age, we performed paired-end strand-specific total RNA sequencing for the hypothalamus tissues of rhesus. We found that hypothalamic gene expression in females was more susceptible to aging than that in males, and reproductive aging in females and males might have different regulatory mechanisms. Intriguingly, the expression of most of the hormones secreted by hypothalamus showed no significant difference among the macaques grouped by age and gender. Moreover, the age-related housekeeping genes in females were enriched in neurodegenerative disorders- and metabolic-related pathways. This study provides evidence that aging may influence hypothalamic gene expression through different mechanisms in females and males and may involve some nonhormonal pathways, which helps further elucidate the process of reproductive aging and improve clinical fertility assessment in mid-aged women.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom