z-logo
open-access-imgOpen Access
Low DAPK1 expression correlates with poor prognosis and sunitinib resistance in clear cell renal cell carcinoma
Author(s) -
Zhengshuai Song,
Zhongyuan Li,
Weiwei Han,
Chenxi Zhu,
Ning Lou,
Xuechao Li,
Gang Luo,
Peng Song,
Guohao Li,
Ye Zhao,
Yonglian Guo
Publication year - 2020
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.103638
Subject(s) - sunitinib , renal cell carcinoma , clear cell renal cell carcinoma , medicine , cell , oncology , cancer research , biology , genetics
We investigated the prognostic significance of Death-Associated Protein Kinase 1 (DAPK1) and its role in sunitinib resistance in clear cell renal cell carcinoma (ccRCC). DAPK1 mRNA levels were significantly lower in tumor tissues than normal kidney tissues in TCGA-KIRC dataset (n=428). Both overall survival and disease-free survival were significantly shorter in ccRCC patients with low DAPK1 expression than those with high DAPK1 expression. Receiver operating characteristic curve analysis showed that low DAPK1 expression correlated with poor prognosis in ccRCC patients. Multivariate analysis confirmed that DAPK1 expression was an independent prognostic indicator in ccRCC. Gene set enrichment analysis showed that low DAPK1 expression correlates with upregulation of pathways related to metastasis, drug resistance, hypoxia and invasiveness in ccRCC patients. Sunitinib-resistant ccRCC cells show significantly lower DAPK1 mRNA and protein levels than sunitinib-sensitive ccRCC cells. DAPK1 overexpression enhances apoptosis in sunitinib-resistant ccRCC cells via the ATF6-dependent ER stress pathway. Xenograft tumors derived from DAPK1-overxpressing ccRCC cells were significantly smaller than the controls in nude mice. Our finding demonstrates that low DAPK1 expression is an independent prognostic indicator that correlates with ccRCC progression and sunitinib resistance.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom