z-logo
open-access-imgOpen Access
CAMKIIγ is a targetable driver of multiple myeloma through CaMKIIγ/ Stat3 axis
Author(s) -
Linlin Yang,
Bowen Wu,
Zhaoxing Wu,
Ying Xu,
Ping Wang,
Mengyuan Li,
Rongzhen Xu,
Yun Liang
Publication year - 2020
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.103490
Subject(s) - multiple myeloma , cancer research , business , chemistry , medicine
Aberrant activation of CAMKIIγ has been linked to leukemia and T-cell lymphoma, but not multiple myeloma (MM). The purpose of this study was to explore the role of CaMKIIγ in the pathogenesis and therapy of MM. In this study, we found that CaMKIIγ was aberrantly activated in human MM and its expression level was positively correlated with malignant progression and poor prognosis. Ectopic expression of CaMKIIγ promoted cell growth, colony formation, cell cycle progress and inhibited apoptosis of MM cell lines, whereas, knockdown of CAMKIIγ expression suppressed MM cell growth in vitro and in vivo. Mechanically, we observed that CaMKIIγ overexpression upregulated p-ERK and p-Stat3 levels and suppression of CaMKIIγ had opposite effects. CaMKIIγ is frequently dysregulated in MM and plays a critical role in maintaining MM cell growth through upregulating STAT3 signaling pathway. Furthermore, our preclinical studies suggest that CaMKIIγ is a potential therapeutic target in MM, and could be intervened pharmacologically by small-molecule berbamine analogues.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom