z-logo
open-access-imgOpen Access
miR-5089-5p suppresses castration-resistant prostate cancer resistance to enzalutamide and metastasis via miR-5089-5p/SPINK1/ MAPK/MMP9 signaling
Author(s) -
Zhichao Wang,
Yan Li,
Keliang Wang,
Lu Wang,
Bosen You,
Danfeng Zhao,
Zhongqing Liu,
Ruizhe Fang,
Jiaqi Wang,
Wei Zhang,
Jinming Zhang,
Wanhai Xu
Publication year - 2020
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.103485
Subject(s) - enzalutamide , prostate cancer , cancer research , gene knockdown , androgen receptor , metastasis , mapk/erk pathway , biology , medicine , cancer , cell culture , signal transduction , microbiology and biotechnology , genetics
Whether serine protease inhibitor Kazal type 1 (SPINK1) being associated with enzalutamide (Enz) resistance and metastasis of castration-resistant prostate cancer (CRPC) has not been clear. SPINK1 promoted Enz resistance by upregulating Androgen receptor splicing variant 7 (ARv7), and enhanced the invasion/migration of Enz-resistant cells via ERK/p38/ MMP9 signaling. Furthermore, miR-5089-5p suppressed SPINK1 mRNA through direct binding to its 3'UTR, and reversed its pro-proliferative and pro-metastatic effects. Mice bearing SPINK1-knockdown Enz-resistant PCa tumors showed significantly longer survival compared with those bearing wild-type tumors, while treatment with miR-5089-5p inhibitor abrogated the protective effects of SPINK1 knockdown. Taken together, SPINK1 can be used as a biomarker of resistance to Enz, and the miR-5089-5p/SPINK1/MAPK/MMP9 axis is a suitable therapeutic target against Enz-resistant and metastatic CRPC.Methods: The expression of SPINK1 in Enz-resistant prostate cancer (PCa) cell lines was detected through next-generation sequencing data and metastatic PCa patients. In vivo and in vitro experiments were performed to investigate the role of SPINK1 in Enz-resistance and metastasis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom