Identification of cardiovascular health gene variants related to longevity in a Chinese population
Author(s) -
Li Zhang,
Chen Bai,
Chao Nie,
Xiaoquan Zhu,
Huiping Yuan,
Liang Sun,
Qi Zhou,
Xiaoling Li,
Xuan Xian,
Fan Yang,
GuoFang Pang,
Yuan Lv,
Xiaolin Ni,
Caiyou Hu,
Ze Yang
Publication year - 2020
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.103396
Subject(s) - longevity , kegg , genome wide association study , disease , biology , genetic association , gene , genetics , medicine , bioinformatics , single nucleotide polymorphism , gene ontology , genotype , gene expression
Cardiovascular disease (CVD) is one of the most important causes of human death, but no attention has been paid to cardiovascular health genes related to healthy longevity. Therefore, we developed a cohort study to explore such genes in healthy, long-lived Chinese subjects. A total of 13275 healthy elderly people were enrolled, including 5107 healthy long-lived individuals and 8168 age-matched control individuals with low CVD risk. Using a combination of whole-exome sequencing (WES) and genome-wide association studies (GWAS), we identified 2 genetic variants (TFPI rs7586970 T, p=0.013, OR=1.100. ADAMTS7 rs3825807 A, p=0.017, OR=1.198) associated with healthy lipid metabolism and longevity. Furthermore, we showed that an interaction among TFPI rs7586970, ADAMTS7 rs3825807 and APOE ɛ3 maintained normal blood lipid levels in centenarians by stratified analysis of CVD risk factors. Finally, through biological function analysis, we revealed clues regarding the mechanism of factor related to cardiovascular health (FCH) such as lipids and longevity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the two variants above may be associated with longevity via FCH lipid metabolism pathways. From a meta-analysis of venous thrombosis patients, we unexpectedly found that rs7586970 T is associated with both longevity and protection against vascular disease.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom