z-logo
open-access-imgOpen Access
Enhanced autophagic retrograde axonal transport by dynein intermediate chain upregulation improves Aβ clearance and cognitive function in APP/PS1 double transgenic mice
Author(s) -
Fanlin Zhou,
Xiaomin Xiong,
Shijie Li,
Jie Liang,
Xiong Zhang,
Mingyuan Tian,
Xiaoju Li,
Minna Gao,
Li Tang,
Yu Li
Publication year - 2020
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.103382
Subject(s) - autophagy , dynein , microbiology and biotechnology , organelle , downregulation and upregulation , transgene , genetically modified mouse , chemistry , axoplasmic transport , merge (version control) , biology , microtubule , biochemistry , apoptosis , gene , computer science , information retrieval
Autophagosome accumulation is observed in the distal axons of Alzheimer disease (AD) patients and AD animal models, suggesting that deficient retrograde transport and impaired autophagic clearance of beta-amyloid (A β) contribute to AD pathogenesis. Expression of the retrograde axonal transport-related protein dynein intermediate chain (DIC) is also reduced in AD patients, but the contributions of DIC to AD pathology remain elusive. This study investigated the effects of DIC expression levels on cognitive function, autophagosome axonal transport, and A β clearance in the APP/PS1 double transgenic mouse model of AD. Autophagic activity was enhanced in the hippocampus of young (3-month-old) AD mice, as evidenced by greater expression of autophagosome markers, lysosome markers, axonal transport motors (including DIC), and dynein regulatory proteins. The expression levels of autophagosome markers remained elevated, whereas those of autophagic and axonal transport proteins decreased progressively with age, accompanied by spatial learning and memory deficits, axonal autophagosome accumulation, and A β deposition. Knockdown of DIC exacerbated while overexpression improved axonal transport, autophagosome maturation, Aβ clearance, and spatial learning and memory in aged AD mice. Our study provides evidence that age-dependent failure of axonal autophagic flux contributes to AD-associated neuropathology and cognitive deficits, suggesting DIC as a potential therapeutic target for AD.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom