z-logo
open-access-imgOpen Access
Long non-coding RNA DLX6-AS1 facilitates bladder cancer progression through modulating miR-195-5p/VEGFA signaling pathway
Author(s) -
Hengbing Wang,
Xiaobing Niu,
Hesong Jiang,
Fei Mao,
Bing Zhong,
Xi Jiang,
Guangbo Fu
Publication year - 2020
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.103374
Subject(s) - microrna , long non coding rna , cancer research , competing endogenous rna , vascular endothelial growth factor a , signal transduction , rna , vegf receptors , microbiology and biotechnology , biology , gene , vascular endothelial growth factor , genetics
In this study, we aim at investigating the expression and regulation role of long non-coding RNA (lncRNA) DLX6-AS1 in bladder cancer (BC). DLX6-AS1 was highly expressed in BC tissues and significant negative correlation with the 5-year survival in the BC patients. The results showed that the proliferation, migration and invasion activities of BC cells were promoted by DLX6-AS1 overexpression, while cell apoptosis was repressed. However, knockdown DLX6-AS1 presented an pposite regulatory effect, and DLX6-AS1 knockdown delayed tumor in vivo . The potential target of DLX6-AS1 in BC was predicted and verified by RIP, RNA pull-down, and dual-luciferase reporter assays as miR-195-5p. The results showed that miR-195-5p was down-regulated in BC tissues, the expression of which was significantly negative correlated with DLX6-AS1 expression. In addition, the results also showed that miR-195-5p targeted and down-regulated the VEGFA. Knockdown of DLX6-AS1 up-regulated miR-195-5p expression and down-regulated VEGFA expression. Moreover, down-regulation of VEGFA expression caused by DLX6-AS1 inhibited phosphorylation of Raf-1, MEK1/2, and ERK1/2, while miR-195-5p inhibitors abolished the effect of silencing DLX6-AS1 expression. Our study demonstrated that DLX6-AS1 played an oncogenic role in BC through miR-195-5p-mediated VEGFA/Ras/Raf/MEK/ERK pathway.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom