z-logo
open-access-imgOpen Access
Fibroblast growth factor 2 contributes to the effect of salidroside on dendritic and synaptic plasticity after cerebral ischemia/reperfusion injury
Author(s) -
Sisi Li,
Ye-Chen Lu,
Dao-Fang Ding,
Zhenzhen Ma,
XiangXin Xing,
XuYun Hua,
JianGuang Xu
Publication year - 2020
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.103308
Subject(s) - salidroside , synaptic plasticity , fibroblast growth factor , ischemia , basic fibroblast growth factor , reperfusion injury , fibroblast , plasticity , neuroscience , microbiology and biotechnology , medicine , chemistry , pharmacology , growth factor , biology , cardiology , materials science , biochemistry , in vitro , receptor , composite material
Ischemic stroke, a serious neurological disease, is associated with cell death, axonal and dendritic plasticity, and other activities. Anti-inflammatory, anti-apoptotic, promote dendritic and synaptic plasticity are critical therapeutic targets after ischemic stroke. Fibroblast growth factor-2 (FGF2), which is involved in the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/CAMP response element (CRE)-binding protein (CREB) pathway, has been shown to facilitate dendritic and synaptic plasticity. Salidroside (Sal) has been reported to have anti-inflammatory, anti-oxidative, and anti-apoptotic effects; however, the underlying mechanisms of Sal in promoting dendritic and synaptic plasticity remain unclear. Here, the anti-inflammatory, anti-apoptotic, dendritic and synaptic plasticity effects of Sal were investigated in vitro in PC12 cells under oxygen-glucose deprivation/reoxygenation (OGD/R) conditions and in vivo in rats with middle cerebral artery occlusion/reperfusion (MCAO/R). We investigated the role of Sal in promoting dendritic and synaptic plasticity in the ischemic penumbra and whether the FGF2-mediated cAMP/PKA/CREB pathway was involved in this process. The present study demonstrated that Sal could significantly inhibit inflammation and apoptosis, and promote dendritic and synaptic plasticity. Overall, our study suggests that Sal is an effective treatment for ischemic stroke that functions via the FGF2-mediated cAMP/PKA/CREB pathway to promote dendritic and synaptic plasticity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom