z-logo
open-access-imgOpen Access
LncRNA SNHG7 promotes cardiac remodeling by upregulating ROCK1 via sponging miR-34-5p
Author(s) -
Jie Wang,
Shouwen Zhang,
Xinhua Li,
Maolei Gong
Publication year - 2020
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.103269
Subject(s) - competing endogenous rna , gene knockdown , viability assay , cardiac fibrosis , chemistry , western blot , cell growth , microbiology and biotechnology , rock1 , gene silencing , mtt assay , myofibroblast , cancer research , microrna , downregulation and upregulation , fibrosis , cell , biology , signal transduction , long non coding rna , medicine , pathology , gene , biochemistry , rhoa
Previous studies have shown that lncRNA small nuclear RNA host gene 7 (lncRNA SNHG7) played an important role in cancer progression. However, the role of lncRNA SNHG7 in cardiac fibrosis is still poorly understood. In this study, the results of quantitative real time polymerase chain reaction (qRT-PCR) analysis showed that lncRNA SNHG7 was over expressed in the infarcted and peri-infarcted area in the left ventricle after MI in mice. Western blot analysis showed that knockdown of SNHG7 decreased the expression of collagen type 1 (Col1)and α-smooth muscle actin (α-SMA). Echocardiographic study suggested that inhibition of SNHG7 improved cardiac function after MI in mice. Luciferase assay indicated SNHG7 could act as a competing endogenous RNA (ceRNA) by sponging miR-34-5p. The MTT cell proliferation assay and 5-ethynyl-2'-deoxyuridine (EdU) labelling assay revealed that co-transfection of SNHG7 and miR-34-5p inhibited cell viability and proliferation of cardiac fibroblasts (CF). All the results indicated that lncRNA SNHG7 could promote cardiac fibrosis via targeting miR-34-5p through acting as a ceRNA in mice after MI. Silencing of SNHG7 could attenuate deposition of collagens and improve cardiac function. miR-34-5p could suppress the fibrogenesis of CF by targeting ROCK1 and abolish SNHG7-induced CF proliferation and fibroblast-to-myofibroblast transition.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom