z-logo
open-access-imgOpen Access
Soy isoflavones improve the oxidative stress induced hypothalamic inflammation and apoptosis in high fat diet-induced obese male mice through PGC1-alpha pathway
Author(s) -
Dejiang Pang,
Chengcheng Yang,
Qihui Luo,
Chao Li,
Wentao Liu,
Lixia Li,
Yuanfeng Zou,
Bin Feng,
Zhengli Chen,
Chao Huang
Publication year - 2020
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.103197
Subject(s) - genistein , isoflavones , oxidative stress , endocrinology , medicine , daidzein , inflammation , coactivator , biology , biochemistry , transcription factor , gene
Obesity is a common metabolic disorder that increases the risk of many diseases, such as type II diabetes, hypertension, cardiovascular disease. Hypothalamus plays a very important role in the progression of obesity, and many studies reveal that hypothalamic injures are implicated in obesity processes. Here, we describe that the consumption of soy isoflavones, with a structural similarity to that of estradiol, could mitigate obesity through improving the hypothalamic inflammation and apoptosis, which are induced by oxidative stress. Also, our in vitro studies demonstrate that daidzein and genistein, common ingredients of soy isoflavones, could protect hypothalamic N42 cells against palmitic acid induced oxidative stress and apoptosis. Moreover, the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator 1 alpha (PGC1-alpha), which plays a role in oxidative defense, is increased after soy isoflavone treatment in vivo and in vitro , suggesting an improved effect of soy isoflavones on hypothalamic antioxidant defense is mediated by PGC-1α. Our study reveals a potential mechanism of soy isoflavones regulating oxidative stress induced hypothalamic inflammation and cellular apoptosis, which will be important for obesity treatment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom