z-logo
open-access-imgOpen Access
Survival-associated alternative splicing signatures in non-small cell lung cancer
Author(s) -
Deze Zhao,
Chuantao Zhang,
Man Jiang,
Yongjie Wang,
Yu Liang,
Li Wang,
Kang Qin,
Faisal UL Rehman,
Xiaochun Zhang
Publication year - 2020
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.102983
Subject(s) - nomogram , lung cancer , alternative splicing , rna splicing , adenocarcinoma , biology , transcriptome , oncology , proteome , survival analysis , receiver operating characteristic , computational biology , bioinformatics , cancer research , medicine , cancer , gene , genetics , rna , gene expression , messenger rna
Alternative splicing (AS) is fundamental to transcriptome and proteome richness, and data from recent studies suggested a critical association between AS and oncogenic processes. To date, no systematic analysis has been conducted on AS from the perspective of different sexes and subtypes in non-small-cell lung cancer (NSCLC). Thus, we integrated the information of NSCLC patients from The Cancer Genome Atlas (TCGA) and evaluated AS profiles from the perspectives of sex and subtype. Eventually, a total of 813 and 1020 AS events were found to be significantly related to the overall survival (OS) of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) patients. Four prognostic prediction models performed well at 1, 3, and 5 years, with an area under the receiver operating characteristic (ROC) curve (AUC) greater than 0.75. Notably, we explored the upstream splicing factors (SFs) and downstream regulatory mechanisms of the OS-associated AS events and verified four differentially expressed alternative splicing (DEAS) events via qPCR. These findings can provide important guidance for subsequent studies. In addition, we also constructed nomograms to facilitate early screening by clinicians and to determine patient outcomes in NSCLC.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom