A nine-gene signature related to tumor microenvironment predicts overall survival with ovarian cancer
Author(s) -
Qi Ding,
Shanshan Dong,
Ranran Wang,
Keqiang Zhang,
Hui Wang,
Xiao Zhou,
Jing Wang,
Kee H. Wong,
Ying Long,
Shuai Zhu,
Weigang Wang,
Huayi Ren,
Yong Zeng
Publication year - 2020
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.102914
Subject(s) - ovarian cancer , gene signature , oncology , tumor microenvironment , signature (topology) , overall survival , medicine , biology , gene , cancer research , cancer , gene expression , genetics , geometry , mathematics
Mounting evidence suggests that immune cell infiltration within the tumor microenvironment (TME) is a crucial regulator of carcinogenesis and therapeutic efficacy in ovarian cancer (OC). In this study, 593 OC patients from TCGA were divided into high and low score groups based on their immune/stromal scores resulting from analysis utilizing the ESTIMATE algorithm. Differential expression analysis revealed 294 intersecting genes that influencing both the immune and stromal scores. Further Cox regression analysis identified 34 differentially expressed genes (DEGs) as prognostic-related genes. Finally, the nine-gene signature was derived from the prognostic-related genes using a Least Absolute Shrinkage and Selection Operator (LASSO) and Cox regression. This nine-gene signature could effectively distinguish the high-risk patients in the training (TCGA database) and validation (GSE17260) cohorts (all p < 0.01). A time-dependent receiver operating characteristic (ROC) analysis showed that the nine-gene signature had a reasonable predictive accuracy (AUC = 0.707, AUC =0.696) in both cohorts. In addition, this nine-gene signature is associated with immune infiltration in TME by Gene Set Variation Analysis (GSVA), and can be used to predict the survival of patients with OC.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom