Aging exacerbates neutrophil pathogenicity in ischemic stroke
Author(s) -
Meaghan Roy-O’Reilly,
Hilda Ahnstedt,
Monica Spychala,
Yashasvee Munshi,
Jaroslaw Aronowski,
Lauren Sansing,
Louise D. McCullough
Publication year - 2020
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.102632
Subject(s) - pathogenicity , ischemic stroke , medicine , stroke (engine) , inflammation , biology , ischemia , microbiology and biotechnology , engineering , mechanical engineering
Ischemic stroke is major cause of disability and mortality worldwide, and aging is strong risk factor for poor post-stroke outcome. Neutrophils traffic rapidly to the brain following ischemic stroke, and recent evidence has suggested that aging may alter neutrophil function after tissue injury. In this study, we hypothesize that aging enhances the pro-inflammatory function of neutrophils, directly contributing to the poorer outcomes seen in aging patients. We utilized demographic data and biological specimens from ischemic stroke patients and an experimental mouse model to determine the correlation between age, neutrophil function and stroke outcomes. In ischemic stroke patients, age was associated with increased mortality and morbidity and higher levels of neutrophil-activating cytokines. In mice, aged animals had higher stroke mortality and morbidity, higher levels of neutrophil-activating cytokines and enhanced generation of neutrophil reactive oxygen species compared to young mice. Finally, depletion of neutrophils via a specific monoclonal antibody after ischemic stroke led to long-term benefits in functional outcome in aged male and female animals, with no benefit observed in young. These results demonstrate that aging is associated with augmented neutrophil pathogenicity in ischemic stroke, and that neutrophil-targeted therapies may confer greater benefit in aged subjects.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom