z-logo
open-access-imgOpen Access
CircRNA AFF4 promotes osteoblast cells proliferation and inhibits apoptosis via the Mir-7223-5p/PIK3R1 axis
Author(s) -
Bobin Mi,
Yuan Xiong,
Lang Chen,
Chenchen Yan,
Yori Endo,
Yi Liu,
Jing Liu,
Liangcong Hu,
Yiqiang Hu,
Yun Sun,
Faqi Cao,
Wu Zhou,
Guohui Liu
Publication year - 2019
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.102524
Subject(s) - apoptosis , microbiology and biotechnology , bone healing , cancer research , cell growth , microrna , chemistry , medicine , biology , anatomy , biochemistry , gene
Fracture healing is a complex process involving various cell types, cytokines, and mRNAs. Here, we report the roles of the circRNA AFF4/miR-7223-5p/PIK3R1 axis during fracture healing. We found that increased expression of PIK3R1 during fracture healing is directly associated with augmented proliferation and decreased apoptosis of MC3T3-E1 cells. Furthermore, miR-7223-5p targeted PI3KR1 and inhibited MC3T3-E1 proliferation while promoting apoptosis. CircRNA AFF4 acted as a sponge of miR-7223-5p, thereby promoting MC3T3-E1 cell proliferation and inhibiting apoptosis. Local injection of circRNA AFF4 into femoral fracture sites promoted fracture healing in vivo while the injection of miR-7223-5p delayed healing. These findings suggest that CircRNA AFF4 promotes fracture healing by targeting the miR-7223-5p/PIK3R1 axis, and suggests miR-7223-5p, CircRNA AFF4, and the miR-7223-5p/PIK3R1 axis are potential therapeutic targets for improving fracture healing.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom