T5224, RSPO2 and AZD5363 are novel drugs against functional pituitary adenoma
Author(s) -
Sheng Zhong,
Bo Wu,
Jiahui Li,
Xinhui Wang,
Shanshan Jiang,
Fangfei Hu,
Gaojing Dou,
Yuan Zhang,
Chunjia Sheng,
Gang Zhao,
Yunqian Li,
Yong Chen
Publication year - 2019
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.102372
Subject(s) - kegg , biology , cancer research , apoptosis , pituitary adenoma , gene , gene expression , microbiology and biotechnology , adenoma , transcriptome , genetics
We tested whether the drugs T5224, RSPO2, and AZD5363 exert therapeutic effects against functioning pituitary adenoma (FPA). We analysed the gene expression profiles of four FPA mRNA microarray datasets (GSE2175, GSE26966, GSE36314, and GSE37153) from the Gene Expression Omnibus database and identified genes differentially expressed in FPA vs control tissues. We then carried out Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction network analyses. We also measured the difference in expression of hub genes between human normal pituitary cells and FPA cells using qRT-PCR. Our in vitro colony-formation and MTT assays showed that cell viability, number, and the size of clonogenicities were all lower in the presence of T5224, RSPO2, or AZD536 than in controls. Moreover, flow cytometry experiments showed that the incidence of apoptosis was higher in the presence of T5224, RSPO2, or AZD5363 than among controls, and was increased by increasing the doses of the drugs. This suggests these drugs could be used as therapeutic agents to treat FPA. Finally, we found that cFos, WNT5A, NCAM1, JUP, AKT3, and ADCY1 are abnormally expressed in FPA cells compared to controls, which highlights these genes as potential prognostic and/or therapeutic targets.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom