LDLRAD2 overexpression predicts poor prognosis and promotes metastasis by activating Wnt/β-catenin/EMT signaling cascade in gastric cancer
Author(s) -
Yucai Wei,
Fan Zhang,
Tong Zhang,
Yating Zhang,
Hao Chen,
Furong Wang,
Yumin Li
Publication year - 2019
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.102359
Subject(s) - wnt signaling pathway , catenin , metastasis , cancer research , cancer , cascade , beta catenin , signal transduction , biology , medicine , oncology , chemistry , microbiology and biotechnology , chromatography
The therapeutic strategies for advanced gastric cancer (GC) remain unsatisfying and limited. Therefore, it is still imperative to fully elucidate the mechanisms underlying GC aggressive progression. The prognostic value and biological functions of low density lipoprotein receptor class A domain containing protein 2 (LDLRAD2) in GC have never been studied yet. We found that LDLRAD2 expression was significantly upregulated in GC and closely correlated with poor prognosis in GC patients. Functionally, LDLRAD2 promoted epithelial-mesenchymal transition, migration and invasion, and metastasis of GC cells. Mechanistically, LDLRAD2 interacted with and inhibited Axin1 from binding to cytoplasmic β-catenin, which facilitated the nuclear translocation of β-catenin, thereby activating Wnt/β-catenin pathway. Inhibition of β-catenin activity markedly abolished LDLRAD2-induced migration, invasion and metastasis. Together, these results suggested that LDLRAD2 contributed to invasion and metastasis of GC through activating Wnt/β-catenin pathway. LDLRAD2/ Wnt/β-catenin axis may be a potential therapeutic target for GC treatment.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom