Beneficial effects of PGC-1α in the substantia nigra of a mouse model of MPTP-induced dopaminergic neurotoxicity
Author(s) -
Ying-Qing Wang,
Chun Chen,
Wanling Huang,
Maoxin Huang,
Juhua Wang,
Xiaochun Chen,
Qinyong Ye
Publication year - 2019
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.102357
Subject(s) - mptp , substantia nigra , dopaminergic , medicine , endocrinology , chemistry , striatum , tyrosine hydroxylase , biology , dopamine
Mitochondrial dysfunction and oxidative stress are closely associated with the pathogenesis of Parkinson's disease. Peroxisome proliferator-activated receptor γ coactivator 1 alpha (PGC-1α) is thought to play multiple roles in the regulation of mitochondrial biogenesis and cellular energy metabolism. We recently reported that altering PGC-1α gene expression modulates mitochondrial functions in N-methyl-4-phenylpyridinium ion (MPP + ) treated human SH-SY5Y neuroblastoma cells, possibly via the regulation of Estrogen-related receptor α (ERRα), nuclear respiratory factor 1 (NRF-1), nuclear respiratory factor 2 (NRF-2) and peroxisome proliferator-activated receptor γ (PPARγ) expression. In the present study, we aimed to further investigate the potential beneficial effects of PGC-1α in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated C57BL mice.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom