β-arrestin-2 enhances intestinal epithelial apoptosis in necrotizing enterocolitis
Author(s) -
Dong Fu,
Peng Li,
Qingfeng Sheng,
Zhibao Lv
Publication year - 2019
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.102320
Subject(s) - endoplasmic reticulum , apoptosis , microbiology and biotechnology , biology , programmed cell death , unfolded protein response , biochemistry
Apoptosis among intestinal epithelial cells contributes to necrotizing enterocolitis (NEC), a severe intestinal disease that particularly affects premature infants. β-arrestin-2, an important regulator of G-protein-coupled receptors, is expressed in intestinal epithelial cells, where its activation promotes apoptosis. We found that β-arrestin-2 was overexpressed in both human and murine NEC samples. β-arrestin-2-deficient mice were protected from endoplasmic reticulum stress and NEC development. The endoplasmic reticulum-resident chaperone BiP was found to promote intestinal epithelial cell survival. Pretreatment of intestinal epithelial cells or mice with the BiP inhibitor HA15 increased cell apoptosis and promoted NEC development. β-arrestin-2 bound to BiP and promoted its polyubiquitination and degradation, thereby facilitating the release of the pro-apoptotic molecule BIK from BiP. Silencing β-arrestin-2 downregulated apoptosis by increasing BiP levels, which suppressed endoplasmic reticulum stress. This study suggests that β-arrestin-2 induces NEC development by inhibiting BiP, thereby triggering apoptosis in response to endoplasmic reticulum stress. Thus, novel therapeutic strategies to inhibit β-arrestin-2 may enhance the treatment of NEC.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom