z-logo
open-access-imgOpen Access
Increased calcium channel in the lamina propria of aging rat
Author(s) -
Ji Min Kim,
HyoungSam Heo,
SungChan Shin,
HyunKeun Kwon,
JinChoon Lee,
EuiSuk Sung,
HyungSik Kim,
Gi Cheol Park,
ByungJoo Lee
Publication year - 2019
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.102284
Subject(s) - lamina propria , calcium channel , verapamil , extracellular matrix , microbiology and biotechnology , calcium , voltage dependent calcium channel , matrix metalloproteinase , biology , medicine , genetics , epithelium
The alterations of the extracellular matrix (ECM) in lamina propria of the vocal folds are important changes that are associated with decreased vibrations and increased stiffness in aging vocal fold. The aim of this study was to investigate the differences in gene expression of lamina propria using next generation sequencing (NGS) in young and aging rats and to identify genes that affect aging-related ECM changes for developing novel therapeutic target molecule. Among the 40 genes suggested in the NGS analysis, voltage-gated calcium channels (VGCC) subunit alpha1 S (CACNA1S), VGCC auxiliary subunit beta 1 (CACNB1), and VGCC auxiliary subunit gamma 1 (CACNG1) were increased in the lamina propria of the old rats compared to the young rats. The synthesis of collagen I and III in hVFFs decreased after si-CACNA1S and verapamil treatment. The expression and activity of matrix metalloproteinases (MMP)-1 and -8 were increased in hVFFs after the treatment of verapamil. However, there was no change in the expression of MMP-2 and -9. These results suggest that some calcium channels may be related with the alteration of aging-related ECM in vocal folds. Calcium channel has promising potential as a novel therapeutic target for the remodeling ECM of aging lamina propria.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom