z-logo
open-access-imgOpen Access
Prognostic value of long non-coding RNA signatures in bladder cancer
Author(s) -
Anbang He,
Shiming He,
Peng Ding,
Yonghao Zhan,
Yifan Li,
Zhicong Chen,
Yanqing Gong,
Xuesong Li,
Liqun Zhou
Publication year - 2019
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.102185
Subject(s) - classifier (uml) , receiver operating characteristic , proportional hazards model , oncology , lasso (programming language) , regression , artificial intelligence , medicine , bladder cancer , computer science , cancer , statistics , mathematics , world wide web
Bladder cancer (BLCA) is a devastating cancer whose early diagnosis can ensure better prognosis. Aim of this study was to evaluate the potential utility of lncRNAs in constructing lncRNA-based classifiers of BLCA prognosis and recurrence. Based on the data concerning BLCA retrieved from TCGA, lncRNA-based classifiers for OS and RFS were built using the least absolute shrinkage and selection operation (LASSO) Cox regression model in the training cohorts. More specifically, a 14-lncRNA-based classifier for OS and a 12-lncRNA-based classifier for RFS were constructed using the LASSO Cox regression. According to the prediction value, patients were divided into high/low-risk groups based on the cut-off of the median risk-score. The log-rank test showed significant differences in OS and RFS between low- and high-risk groups in the training, validation and whole cohorts. In the time-dependent ROC curve analysis, the AUCs for OS in the first, third, and fifth year were 0.734, 0.78, and 0.78 respectively, whereas the prediction capability of the 14-lncRNA classifier was superior to a previously published lncRNA classifier. As for the RFS, the AUCs in the first, third, and fifth year were 0.755, 0.715, and 0.740 respectively. In summary, the two-lncRNA-based classifiers could serve as novel and independent prognostic factors for OS and RFS individually.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom