z-logo
open-access-imgOpen Access
The combination of lonafarnib and sorafenib induces cyclin D1 degradation via ATG3-mediated autophagic flux in hepatocellular carcinoma cells
Author(s) -
Jialiang Wang,
Huan Wei,
Yanlin Huang,
Dongmei Chen,
Guofen Zeng,
Yifan Lian,
Yuehua Huang
Publication year - 2019
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.102165
Subject(s) - sorafenib , autophagy , cyclin d1 , cancer research , hepatocellular carcinoma , pharmacology , chemistry , apoptosis , viability assay , combination therapy , gene knockdown , cell culture , cell cycle , medicine , biology , biochemistry , genetics
Combination treatment is a promising strategy to improve prognosis of hepatocellular carcinoma (HCC). Sorafenib is a traditional first-line agent approved for the treatment of advanced HCC, though with limited efficacy. Previously, we reported that lonafarnib, an orally bioavailable non-peptide inhibitor targeting farnesyltransferase, synergizes with sorafenib against the growth of HCC cells. In the present study, we aim to clarify the underlying mechanism of this combination strategy. Initially, using in vitro HCC cell model, we confirmed that synergistic treatment of lonafarnib and sorafenib suppressed cell viability and colony formation, and induced cell death. We then found conversion of LC3-I to LC3-II via combination the treatment and observed formation of autophagosomes by electron microscopy. Knockdown of ATG3 inhibited the autophagic flux induced by the combination treatment. Furthermore, we demonstrated that drug-eliciting autophagy selectively promoted the degradation of cyclin D1 in a lysosome-dependent manner and subsequently inhibited DNA synthesis through downregulating the phosphorylation of Rb protein. In conclusion, our results provide a deeper insight into the mechanism for the combination treatment of lonafarnib and sorafenib in HCC therapy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom