z-logo
open-access-imgOpen Access
Conserved roles of glucose in suppressing reactive oxygen species-induced cell death and animal survival
Author(s) -
Congrong Wang,
Yinan Zhang,
Fengwen Li,
Yuehua Wei
Publication year - 2019
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.102155
Subject(s) - paraquat , reactive oxygen species , biology , carbohydrate metabolism , mitochondrial ros , microbiology and biotechnology , mutant , programmed cell death , biochemistry , apoptosis , gene
Carbohydrate overconsumption increases blood glucose levels, which contributes to the development of various diseases including obesity and diabetes. It is generally believed that high glucose metabolism increases cellular reactive oxygen species (ROS) levels, damages insulin-secreting cells and leads to age-associated diabetic phenotypes. Here we find that in contrast, high glucose suppresses ROS production induced by paraquat in both mammalian cells and the round worm C. elegans . The role of glucose in suppressing ROS is further supported by glucose's ability to alleviate paraquat's toxicity on C. elegans development . Consistently, we find that the ROS-regulated transcription factor SKN-1 is inactivated by glucose. As a result, the ROS/SKN-1-dependent lifespan extension observed in paraquat-treated animals, mitochondrial respiration mutant isp-1 and germline-less mutant glp-1 are all suppressed by glucose. Our study reveals an unprecedented interaction of glucose with ROS, which could have significant impact on our current understanding of glucose- and ROS-related diseases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom