Assessment of ERBB2 and TOP2α gene status and expression profile in feline mammary tumors: findings and guidelines
Author(s) -
Daniela Ferreira,
Maria Soares,
Jorge Correia,
Filomena Adega,
Fernando Ferreira,
Raquel Chaves
Publication year - 2019
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.102079
Subject(s) - gene expression , gene , breast cancer , anthracycline , mammary tumor , cancer research , biology , medicine , cancer , pathology , oncology , genetics
In humans, the ERBB2 gene amplification and overexpression are biomarkers for invasive breast cancer and a therapeutic target. Also, TOP2α gene aberrations predict the response to anthracycline-based adjuvant chemotherapy. Although feline mammary tumors (FMTs) are good models in comparative oncology, scarce data is available regarding the ERBB2 and TOP2α status. In this study, and for the first time, the ERBB2 DNA status and RNA levels of intracellular (ICD) and extracellular (ECD) coding regions were compared with TOP2α gene status and expression profile, in samples of FMTs and disease-free tissues from the same animal. Results showed that ERBB2 and TOP2α gene status are highly correlated (r=0.87, p<0.0001, n=25), with few tumor samples presenting amplification. Also, the majority of the FMTs showed ERBB2 overexpression coupled with TOP2α overexpression (r=0.87, p<0.0001, n=27), being the ERBB2 -ICD and ECD transcripts highly correlated (r=0.97, p<0.0001, n=27). Significant associations were found between TOP2α gene status or ERBB2 and TOP2α RNA levels with several clinicopathological parameters. This work highlights the need of experimental designs for a precise evaluation of ERBB2 and TOP2α gene status and its expression in FMTs, to improve their clinical management and to further validate them as a suitable model for comparative oncology studies.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom