Grape seed proanthocyanidins ameliorate neuronal oxidative damage by inhibiting GSK-3β-dependent mitochondrial permeability transition pore opening in an experimental model of sporadic Alzheimer’s disease
Author(s) -
Qinru Sun,
Ning Jia,
Xin Li,
Jie Yang,
Guomin Chen
Publication year - 2019
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.102041
Subject(s) - mitochondrial permeability transition pore , oxidative stress , mptp , gsk 3 , mitochondrion , neuroprotection , protein kinase b , gsk3b , oxidative phosphorylation , cognitive decline , neurodegeneration , chemistry , pharmacology , biology , endocrinology , microbiology and biotechnology , medicine , kinase , biochemistry , apoptosis , programmed cell death , phosphorylation , parkinson's disease , disease , dementia
Mitochondria-associated oxidative stress plays a crucial role in Alzheimer's disease (AD). Grape seed proanthocyanidins (GSPs) have been reported to prevent oxidative stress. In this study, we investigated the underlying mechanisms of GSPs in protecting neurons against oxidative injury in an experimental model of sporadic AD. Primary mouse cortical neurons were subjected to streptozotocin (STZ) to mimic neuronal oxidative damage in vitro , and mice were subjected to intracerebroventricular (ICV) injection of STZ as an in vivo sporadic AD model. GSPs not only significantly ameliorated neuron loss and mitochondrial dysfunction in mouse cortical neurons pretreated of STZ, but also reduced cognitive impairments, apoptosis and mitochondrial oxidative stress in the cerebral cortex and hippocampus of sporadic AD mice. Moreover, GSPs increased phosphorylation levels of phosphatidylinositol 3-kinase (PI3K), Akt and glycogen synthase kinase 3β (GSK-3β) at its Ser9. Notably, GSPs inhibited STZ-induced mitochondrial permeability transition pore (mPTP) opening via enhancing phosphorylated GSK-3β (p-GSK-3β) binds to adenine nucleotide translocator (ANT), thereby reducing the formation of the complex ANT-cyclophilin D (CypD). In conclusion, GSPs ameliorate neuronal oxidative damage and cognitive impairment by inhibiting GSK-3β-dependent mPTP opening in AD. Our study provides new insights into that GSPs may be a new therapeutic candidate for treatment of AD.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom