Cognitive compensatory mechanisms in normal aging: a study on verbal fluency and the contribution of other cognitive functions
Author(s) -
Lissett GonzalezBurgos,
Juan Hernández,
Eric Westman,
José Barroso,
Daniel Ferreira
Publication year - 2019
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.102040
Subject(s) - verbal fluency test , fluency , cognition , psychology , cognitive aging , developmental psychology , executive functions , association (psychology) , cognitive psychology , neuropsychology , neuroscience , mathematics education , psychotherapist
Verbal fluency has been widely studied in cognitive aging. However, compensatory mechanisms that maintain its optimal performance with increasing age are not completely understood. Using cross-sectional data, we investigated differentiation and dedifferentiation processes in verbal fluency across the lifespan by analyzing the association between verbal fluency and numerous cognitive measures within four age groups (N=446): early middle-age (32-45 years), late middle-age (46-58 years), early elderly (59-71 years), and late elderly (72-84 years). ANCOVA was used to investigate the interaction between age and fluency modality. Random forest models were conducted to study the contribution of cognition to semantic, phonemic, and action fluency. All modalities declined with increasing age, but semantic fluency was the most vulnerable to aging. The most prominent reduction in performance was observed during the transition from middle-age to early elderly, when cognitive variables stopped contributing (differentiation), and new cognitive variables started contributing (dedifferentiation). Lexical access, processing speed, and executive functions were among the most contributing functions. We conclude that the association between age and verbal fluency is masked by age-specific influences of other cognitive functions. Differentiation and dedifferentiation processes can coexist. This study provides important data for better understanding of cognitive aging and compensatory processes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom