z-logo
open-access-imgOpen Access
Kainic acid Induces production and aggregation of amyloid β-protein and memory deficits by activating inflammasomes in NLRP3- and NF-κB-stimulated pathways
Author(s) -
Yang Ruan,
Xiang Qiu,
Yudan Lv,
Dong Dong,
Xiujuan Wu,
Jie Zhu,
Xiangyu Zheng
Publication year - 2019
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.102017
Subject(s) - inflammasome , nf κb , pyrin domain , microbiology and biotechnology , microglia , heterotrimeric g protein , gene knockdown , biology , kainic acid , neurotrophic factors , receptor , signal transduction , cancer research , chemistry , immunology , inflammation , biochemistry , g protein , apoptosis , glutamate receptor
Kainic acid (KA) treatment causes neuronal degeneration, which is a feature of Alzheimer’s disease (AD) symptoms such as amyloid β-protein production and memory deficits. Inflammasomes are known to be critical for the progression of AD. However, the underlying mechanism by which inflammasomes influence AD progression remains unknown. The present study investigated the damaging effect of KA on neurons by focusing on the inflammasome-mediated signaling pathways. Assessments using cultured microglia and mouse brains demonstrated that KA treatment specifically induced inflammasome activation. Mechanistic evaluations showed that KA activated two major components of inflammasomes, nucleotide binding oligomerization domain (NOD)-like receptor (NLR) protein 3 (NLRP3) and nuclear factor (NF)-κB, which resulted in the production of interleukin-1β (IL-1β) and brain-derived neurotrophic factor (BDNF). Inhibition of NLRP3 or NF-κB by Bay11-7082 caused a reduction in the KA-induced expression of interleukin (IL)-1β and BDNF. Moreover, knockdown of the expression of KA receptors (KARs) such as Grik1 and Grik3 induced suppression of NLRP3 and NF-κB, suggesting that KARs function upstream of NLRP3 and NF-κB to mediate the effects of KA on regulation of IL-1β and BDNF expression. Notably, IL-1β was shown to exert positive effects on the expression of BACE1, which is blocked by Bay11-7082. Overall, our results revealed that Bay11-7082 acts against KA-induced neuronal degeneration, amyloid β-protein (Aβ) deposition, and memory defects via inflammasomes and further highlighted the protective role of Bay11-7082 in KA-induced neuronal defects.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom