z-logo
open-access-imgOpen Access
Evaluation of the diagnostic ability of laminin gene family for pancreatic ductal adenocarcinoma
Author(s) -
Chengkun Yang,
ZhengQian Liu,
Xianmin Zeng,
Qiongyuan Wu,
Xiwen Liao,
Xiangkun Wang,
Chuangye Han,
Tingdong Yu,
Guangzhi Zhu,
Wei Qin,
Tao Peng
Publication year - 2019
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.102007
Subject(s) - laminin , pancreatic cancer , cancer research , immunohistochemistry , pancreatic ductal adenocarcinoma , biology , adenocarcinoma , medicine , pathology , oncology , cancer , cell , genetics
A poor outcome for pancreatic ductal adenocarcinoma (PDAC) patients is still a challenge worldwide. The aim of our study is to investigate the potential of key laminin subunits for being used both as a diagnostic and prognostic biomarker for PDAC patients. We evaluated the mRNA expression and prognostic value of laminin gene family in PDAC tissues using online public databases. Moreover, the relationship between key laminin subunits in PDAC blood cells and circulating tumor cells (CTCs) and the distinguishing ability of joint serum levels with carbohydrate antigen 19-9 (CA19-9) was analyzed. Two key differentially expressed subunits (LAMA3 and LAMC2) that are associated with prognosis of PDAC patients were found to show a potential for distinguishing between PDAC and non-tumor tissues. LAMA3 and LAMC2 expression were found to be positively related with CTC quantity in PDAC blood (R=0.628, p=0.029; R=0.776, p=0.003, respectively) using IgG chips. Furthermore, serum LAMC2 levels offered significant improvement over using CA19-9 alone for the discrimination of PDAC. Joint serum LAMC2 and CA19-9 levels increased the net benefit proportion in early stage/operational PDAC patients. Using integrated profiling, we identified LAMA3 and LAMC2 as potential therapeutic targets and prognostic markers for PDAC, for which further validation is warranted.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom