z-logo
open-access-imgOpen Access
DNA methylation-based age prediction and telomere length in white blood cells and cumulus cells of infertile women with normal or poor response to ovarian stimulation
Author(s) -
S.J. Morin,
Xin Tao,
Diego Marín,
Yiping Zhan,
J. Landis,
Jenna Bedard,
Richard T. W. Scott,
Emre Seli
Publication year - 2018
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.101670
Subject(s) - telomere , epigenetics , dna methylation , biology , senescence , fertility , physiology , follicular phase , medicine , somatic cell , oncology , andrology , genetics , population , dna , gene expression , environmental health , gene
An algorithm assessing the methylation levels of 353 informative CpG sites in the human genome permits accurate prediction of the chronologic age of a subject. Interestingly, when there is discrepancy between the predicted age and chronologic age (age acceleration or "AgeAccel"), patients are at risk for morbidity and mortality. Identification of infertile patients at risk for accelerated reproductive senescence may permit preventative action. This study aimed to assess the accuracy of the "epigenetic clock" concept in reproductive age women undergoing fertility treatment by applying the age prediction algorithm in peripheral (white blood cells [WBCs]) and follicular somatic cells (cumulus cells [CCs]), and to identify whether women with premature reproductive aging (diminished ovarian reserve) were at risk of AgeAccel in their age prediction. Results indicated that the epigenetic algorithm accurately predicts age when applied to WBCs but not to CCs. The age prediction of CCs was substantially younger than chronologic age regardless of the patient's age or response to stimulation. In addition, telomeres of CCs were significantly longer than that of WBCs. Our findings suggest that CCs do not demonstrate changes in methylome-predicted age or telomere-length in association with increasing female age or ovarian response to stimulation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom