Phosphatidylcholine could protect the defect of zearalenone exposure on follicular development and oocyte maturation
Author(s) -
Fang-g Lai,
Xuelian Liu,
Na Li,
Ruiqian Zhang,
Yong Zhao,
Yanzhong Feng,
C. M. Nyachoti,
Wei Shen,
Lan Li
Publication year - 2018
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.101660
Subject(s) - oocyte , follicular phase , follicular fluid , ovarian follicle , follicle , endocrinology , medicine , biology , andrology , antral follicle , chemistry , microbiology and biotechnology , embryo
Zearalenone (ZEA) is a well-known exogenous endocrine disruptor and can lead to severe negative effects on the human and animal reproductive process. Using a follicle culture model, we have previously shown that ZEA exposure significantly affected the follicular development and antrum formation but the underlying mechanisms are not well known. Therefore, in this study, we explored the metabolomic changes of granulosa cell (GC) culture media with or without ZEA exposure. The results showed that ZEA significantly increased phosphatidylcholine or phosphatidyl ethanolamine adducts in culture medium. A comprehensive analysis with the metabolome data from follicular fluid of small and large antral follicles showed that lyso phosphatidylcholine (LPC) was accumulated during follicle growth, but was depleted by ZEA exposure. Exogenous supplement with LPC to the follicle growth media or oocyte maturation media can partly protect the defect of ZEA exposure on follicular antrum formation and oocyte maturation. Taken together, our results demonstrate that ZEA exposure hinders the follicular growth and exogenous LPC can practically protect the defect of ZEA on follicular development and oocyte maturation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom