z-logo
open-access-imgOpen Access
Stroke sensitivity in the aged: sex chromosome complement vs. gonadal hormones
Author(s) -
Louise D. McCullough,
Mehwish A. Mirza,
Yan Xu,
Kathryn Bentivegna,
Eleanor B. Steffens,
Rodney M. Ritzel,
Fudong Liu
Publication year - 2016
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.100997
Subject(s) - hormone , medicine , stroke (engine) , endocrinology , sexual dimorphism , testis determining factor , sex hormone binding globulin , physiology , sex characteristics , biology , y chromosome , androgen , gene , genetics , mechanical engineering , engineering
Stroke is a sexually dimorphic disease. Elderly women not only have higher stroke incidence than age-matched men, but also have poorer recovery and higher morbidity and mortality after stroke. In older, post-menopausal women, gonadal hormone levels are similar to that of men. This suggests that tissue damage and functional outcomes are influenced by biologic sex (XX vs. XY) rather than the hormonal milieu at older ages. We employed the Four Core Genotype (FCG) mouse model to study the contribution of sex chromosome complement and gonadal hormones to stroke sensitivity in aged mice in which the testis determining gene (Sry) is removed from the Y chromosome, allowing for the generation of XX males and XY females. XXF, XXM, XYF, XYM and XYwt aged mice were subjected to middle cerebral artery occlusion (MCAO). XXF and XXM mice had significantly larger infarct volumes than XYF and XYM cohorts respectively. There was no significant difference in hormone levels among aged FCG mice. XXF/XXM mice also had more robust microglial activation and higher serum levels of pro-inflammatory cytokines than XYF/XYM cohort respectively. We concluded that the sex chromosome complement contributes to ischemic sensitivity in aged animals and leads to sex differences in innate immune responses.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom