Bedaquiline, an FDA-approved antibiotic, inhibits mitochondrial function and potently blocks the proliferative expansion of stem-like cancer cells (CSCs)
Author(s) -
Marco Fiorillo,
Rebecca Lamb,
Herbert B. Tanowitz,
Anna Rita Cappello,
Ubaldo MartinezOutschoorn,
Federica Sotgia,
Michael P. Lisanti
Publication year - 2016
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.100983
Subject(s) - bedaquiline , pharmacology , cancer stem cell , cancer research , mitochondrion , cancer , cancer cell , biology , chemistry , medicine , biochemistry , tuberculosis , pathology , mycobacterium tuberculosis
Bedaquiline (a.k.a., Sirturo) is an anti-microbial agent, which is approved by the FDA for the treatment of multi-drug resistant pulmonary tuberculosis (TB). Bedaquiline is a first-in-class diaryl-quinoline compound, that mechanistically inhibits the bacterial ATP-synthase, and shows potent activity against both drug-sensitive and drug-resistant TB. Interestingly, eukaryotic mitochondria originally evolved from engulfed aerobic bacteria. Thus, we hypothesized that, in mammalian cells, bedaquiline might also target the mitochondrial ATP-synthase, leading to mitochondrial dysfunction and ATP depletion. Here, we show that bedaquiline has anti-cancer activity, directed against Cancer Stem-like Cells (CSCs). More specifically, we demonstrate that bedaquiline treatment of MCF7 breast cancer cells inhibits mitochondrial oxygen-consumption, as well as glycolysis, but induces oxidative stress. Importantly, bedaquiline significantly blocks the propagation and expansion of MCF7-derived CSCs, with an IC-50 of approx. 1-μM, as determined using the mammosphere assay. Similarly, bedaquiline also reduces both the CD44+/CD24low/- CSC and ALDH+ CSC populations, under anchorage-independent growth conditions. In striking contrast, bedaquiline significantly increases oxygen consumption in normal human fibroblasts, consistent with the fact that it is well-tolerated in patients treated for TB infections. As such, future pre-clinical studies and human clinical trials in cancer patients may be warranted. Interestingly, we also highlight that bedaquiline shares certain structural similarities with trans-piceatannol and trans-resveratrol, which are known natural flavonoid inhibitors of the mitochondrial ATP-synthase (complex V) and show anti-aging properties.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom