z-logo
open-access-imgOpen Access
OTX2 regulates the expression of TAp63 leading to macular and cochlear neuroepithelium development
Author(s) -
Ramona Palombo,
Giovanni Porta,
Ernesto Bruno,
Paolo Provero,
Valeria Serra,
Karthik Neduri,
Andrea Viziano,
Marco Alessandrini,
Alessandro Micarelli,
Fabrizio Ottaviani,
Gerry Melino,
Alessandro Terrii
Publication year - 2015
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.100839
Subject(s) - neuroepithelial cell , biology , notch signaling pathway , microbiology and biotechnology , cochlea , neuroscience , signal transduction , neural stem cell , stem cell
OTX proteins, homologs of the Drosophila orthodenticle (Otd), are important for the morphogenesis of the neuroectoderm, and for the central nervous system formation. OTX1 and OTX2 are important for the cochlea and macula development, indeed when OTX1 is knocked down, these organs undergo developmental failure. Moreover OTX2 transfection revert this effect in OTX1(-/-) mice. The TA isoform of TP63, involved in Notch regulation pathway, has a critical function in the cochlear neuroepithelium differentiation. TAp63 positively regulates Hes5 and Atoh1 transcription. This pathway has been also demonstrated in p63(-/-) mice, and in patients p63 mutated, affected by Ectodermal Dysplasia (ED, OMIM 129810). These patients are affected by mild sensorineural deafness, most likely related to the mutation in p63 gene impairing the Notch pathway. We demonstrated the role of OTX2 on TAp63 regulation necessary for the correct formation of macular neuroepithelium and we confirmed the impairment of vestibular function caused by p63 mutations. Although the abnormalities found in our patient were still at a subclinical extent, aging could exacerbate this impairment and cause a decrease in quality of life.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom