Wound healing and longevity: Lessons from long-lived αMUPA mice
Author(s) -
Hagai Yanai,
Dmitri Toren,
Klemens Vierlinger,
Manuela Hofner,
Christa Nöhammer,
Marco Chilosi,
Arie Budovsky,
Vadim E. Fraifeld
Publication year - 2015
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.100726
Subject(s) - longevity , wound healing , biology , genetically modified mouse , carcinogenesis , phenotype , apoptosis , transgene , microbiology and biotechnology , gene , cancer research , immunology , genetics
Does the longevity phenotype offer an advantage in wound healing (WH)? In an attempt to answer this question, we explored skin wound healing in the long-lived transgenic αMUPA mice, a unique model of genetically extended life span. These mice spontaneously eat less, preserve their body mass, are more resistant to spontaneous and induced tumorigenesis and live longer, thus greatly mimicking the effects of caloric restriction (CR). We found that αMUPA mice showed a much slower age-related decline in the rate of WH than their wild-type counterparts (FVB/N). After full closure of the wound, gene expression in the skin of old αMUPA mice returned close to basal levels. In contrast, old FVB/N mice still exhibited significant upregulation of genes associated with growth-promoting pathways, apoptosis and cell-cell/cell-extra cellular matrix interaction, indicating an ongoing tissue remodeling or an inability to properly shut down the repair process. It appears that the CR-like longevity phenotype is associated with more balanced and efficient WH mechanisms in old age, which could ensure a long-term survival advantage.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom