PCH-2 regulates Caenorhabditis elegans lifespan
Author(s) -
Hong Qian,
X.Z. Shawn Xu,
Laura E. Niklason
Publication year - 2015
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.100713
Subject(s) - caenorhabditis elegans , biology , longevity , genetics , gene , rna interference , chromatin , sirtuin , model organism , microbiology and biotechnology , regulator , gene silencing , rna , acetylation
Components or downstream targets of many signaling pathways such as Insulin/IGF-1 and TOR, as well as genes involved in cellular metabolism and bioenergetics can extend worm lifespan 20% or more. The C. elegans gene pch-2 and its homologs, including TRIP13 in humans, have been studied for their functions in cell mitosis and meiosis, but have never been implicated in lifespan regulation. Here we show that over-expression of TRIP13 in human fibroblasts confers resistance to environmental stressors such as UV radiation and oxidative stress. Furthermore, pch-2 overexpression in C. elegans extends worm lifespan, and enhances worm survival in response to various stressors. Conversely, reducing pch-2 expression with RNAi shortens worm lifespan. Additional genetic epistasis analysis indicates that the molecular mechanism of pch-2 in worm longevity is tied to functions of the sirtuin family, implying that pch-2 is another chromatin regulator for worm longevity. These findings suggest a novel function of the pch-2 gene involved in lifespan determination.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom