z-logo
open-access-imgOpen Access
Iron promotes protein insolubility and aging in C. elegans
Author(s) -
Ida M. Klang,
Birgit Schilling,
Dylan J. Sorensen,
Alexandria K. Sahu,
Pankaj Kapahi,
Julie K. Andersen,
Peter Swoboda,
David W. Killilea,
Bradford W. Gibson,
Gordon J. Lithgow
Publication year - 2014
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.100689
Subject(s) - proteotoxicity , longevity , proteostasis , ageing , protein aggregation , biology , microbiology and biotechnology , chemistry , endocrinology , genetics
Many late-onset proteotoxic diseases are accompanied by a disruption in homeostasis of metals (metallostasis) including iron, copper and zinc. Although aging is the most prominent risk factor for these disorders, the impact of aging on metallostasis and its role in proteotoxic disease remain poorly understood. Moreover, it is not clear whether a loss of metallostasis influences normal aging. We have investigated the role of metallostasis in longevity ofCaenorhabditis elegans. We found that calcium, copper, iron, and manganese levels increase as a function of age, while potassium and phosphorus levels tend to decrease. Increased dietary iron significantly accelerated the age-related accumulation of insoluble protein, a molecular pathology of aging. Proteomic analysis revealed widespread effects of dietary iron in multiple organelles and tissues. Pharmacological interventions to block accumulation of specific metals attenuated many models of proteotoxicity and extended normal lifespan. Collectively, these results suggest that a loss of metallostasis with aging contributes to age-related protein aggregation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom