z-logo
open-access-imgOpen Access
Hexosamine pathway but not interstitial changes mediates glucotoxicity in pancreatic β-cells as assessed by cytosolic Ca2+ response to glucose
Author(s) -
Kazuhiro Yanagida,
Yuko Maejima,
Putra Santoso,
Zesemdorj Otgon-Uul,
Yifei Yang,
Kazuya Sakuma,
Kenju Shimomura,
Toshihiko Yada
Publication year - 2014
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.100647
Subject(s) - medicine , endocrinology , insulin , carbohydrate metabolism , metabolism , pancreatic islets , cytosol , chemistry , biology , islet , biochemistry , enzyme
Hyperglycemia impairs insulin secretion as well as insulin action, being recognized as the glucotoxicity that accelerates diabetes. However, the mechanism underlying the glucotoxicity in pancreatic β-cells is not thoroughly understood. Hyperglycemia alters glucose metabolism within β-cells and interstitial conditions around β-cells, including elevated osmolarity and increased concentrations of insulin and ATP released from overstimulated β-cells. In this study, to explore direct effects of these alterations on β-cells, single β-cells isolated from rat islets were cultured for 3 days with high (22.3 mM) glucose (HG), compared with control 5.6 mM glucose, followed by their functional assessment by measuring cytosolic Ca2+ concentration ([Ca2+]i). The [Ca2+]i response to a physiological rise in glucose concentration to 8.3 mM was impaired in b-cells following culture with HG for 3 days, while it was preserved in β-cells following culture with non-metabolizable L-glucose and with elevated osmolarity, insulin and ATP. This HG-induced impairment of [Ca2+]i response to 8.3 mM glucose was prevented by adding azaserine, a hexosamine pathway inhibitor, into HG culture. Conversely, culture with glucosamine, which increases the hexosamine pathway flux, impaired [Ca2+]i response to 8.3 mM glucose, mimicking HG. These results suggest that the HG-associated abnormal glucose metabolism through hexosamine pathway, but not elevated osmolarity, insulin and ATP, plays a major role in the glucotoxicity to impair the secretory function of pancreatic β-cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom