One-carbon metabolism: An aging-cancer crossroad for the gerosuppressant metformin
Author(s) -
Javier A. Menéndez,
Jorge Joven
Publication year - 2013
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.100523
Subject(s) - ampk , metformin , pi3k/akt/mtor pathway , cancer , medicine , chemistry , biology , signal transduction , microbiology and biotechnology , endocrinology , kinase , protein kinase a , diabetes mellitus
The gerosuppressant metformin operates as an efficient inhibitor of the mTOR/S6K1 gerogenic pathway due to its ability to ultimately activate the energy-sensor AMPK. If an aging-related decline in the AMPK sensitivity to cellular stress is a crucial event for mTOR-driven aging and aging-related diseases, including cancer, unraveling new proximal causes through which AMPK activation endows its gerosuppressive effects may offer not only a better understanding of metformin function but also the likely possibility of repositioning our existing gerosuppressant drugs. Here we provide our perspective on recent findings suggesting that de novo biosynthesis of purine nucleotides, which is based on the metabolism of one-carbon compounds, is a new target for metformin's actions at the crossroads of aging and cancer.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom