z-logo
open-access-imgOpen Access
NF90 coordinately represses the senescence-associated secretory phenotype
Author(s) -
Kumiko Tominaga-Yamanaka,
Kotb Abdelmohsen,
Jennifer L. Martindale,
Xiaoling Yang,
Dennis D. Taub,
Myriam Gorospe
Publication year - 2012
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.100497
Subject(s) - senescence , chemokine , repressor , microbiology and biotechnology , gene silencing , biology , phenotype , rna binding protein , receptor , translation (biology) , messenger rna , gene expression , genetics , gene
A hallmark trait of cellular senescence is the acquisition of a senescence-associated secretory phenotype (SASP). SASP factors include cytokines and their receptors (IL-6, IL-8, osteoprotegerin, GM-CSF), chemokines and their ligands (MCP-1, HCC4), and oncogenes (Gro1 and Gro2), many of them encoded by mRNAs whose stability and translation are tightly regulated. Using two models of human fibroblast senescence (WI-38 and IDH4 cells), we report the identification of RNA-binding protein NF90 as a post-transcriptional repressor of several SASP factors. In 'young', proliferating fibroblasts, NF90 was highly abundant, associated with numerous SASP mRNAs, and inhibited their expression. By contrast, senescent cells expressed low levels of NF90, thus allowing SASP factor expression to increase. NF90 elicited these effects mainly by repressing the translation of target SASP mRNAs, since silencing NF90 did not increase the steady-state levels of SASP mRNAs but elevated key SASP factors including MCP-1, GROa, IL-6, and IL-8. Our findings indicate that NF90 contributes to maintaining low levels of SASP factors in non-senescent cells, while NF90 reduction in senescent cells allows SASP factor expression to rise.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom