z-logo
open-access-imgOpen Access
Aging induced decline in T-lymphopoiesis is primarily dependent on status of progenitor niches in the bone marrow and thymus
Author(s) -
Liguang Sun,
Robert Brown,
Shande Chen,
Qichuan Zhuge,
DongMing Su
Publication year - 2012
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.100487
Subject(s) - lymphopoiesis , progenitor cell , bone marrow , haematopoiesis , biology , stem cell , immunology , niche , myeloid , stromal cell , microbiology and biotechnology , progenitor , cancer research , biochemistry
Age-related decline in the generation of T cells is associated with two primary lymphoid organs, the bone marrow (BM) and thymus. Both organs contain lympho-hematopoietic progenitor/stem cells (LPCs) and non-hematopoietic stromal/niche cells. Murine model showed this decline is not due to reduced quantities of LPCs, nor autonomous defects in LPCs, but rather defects in their niche cells. However, this viewpoint is challenged by the fact that aged BM progenitors have a myeloid skew. By grafting young wild-type (WT) BM progenitors into aged IL-7R-/- hosts, which possess WT-equivalent niches although LPCs are defect, we demonstrated that these young BM progenitors also exhibited a myeloid skew. We, further, demonstrated that aged BM progenitors, recruited by a grafted fetal thymus in the in vivo microenvironment, were able to compete with their young counterparts, although the in vitro manipulated old BM cells were not able to do so in conventional BM transplantation. Both LPCs and their niche cells inevitably get old with increasing organismal age, but aging in niche cells occurred much earlier than in LPCs by an observation in thymic T-lymphopoiesis. Therefore, the aging induced decline in competence to generate T cells is primarily dependent on status of the progenitor niche cells in the BM and thymus.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom