z-logo
open-access-imgOpen Access
Metabolomic fingerprint reveals that metformin impairs one-carbon metabolism in a manner similar to the antifolate class of chemotherapy drugs
Author(s) -
Bruna Corominas-Faja,
Rosa QuirantesPiné,
Cristina OliverasFerraros,
Alejandro VázquezMartín,
Sílvia Cufí,
Begoña Martı́n-Castillo,
Vicente Micol,
Jorge Joven,
Antonio SeguraCarretero,
Javier A. Menéndez
Publication year - 2012
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.100472
Subject(s) - metabolomics , antifolate , metformin , pharmacology , fingerprint (computing) , chemotherapy , chemistry , computational biology , biology , medicine , bioinformatics , antimetabolite , computer science , insulin , computer security
Metabolomic fingerprint of breast cancer cells treated with the antidiabetic drug metformin revealed a significant accumulation of 5-formimino-tetrahydrofolate, one of the tetrahydrofolate forms carrying activated one-carbon units that are essential for the de novo synthesis of purines and pyrimidines. De novo synthesis of glutathione, a folate-dependent pathway interconnected with one-carbon metabolism was concomitantly depleted in response to metformin. End-product reversal studies demonstrated that thymidine alone leads to a significant but incomplete protection from metformin's cytostatic effects. The addition of the substrate hypoxanthine for the purine salvage pathway produces major rightward shifts in metformin's growth inhibition curves. Metformin treatment failed to activate the DNA repair protein ATM kinase and the metabolic tumor suppressor AMPK when thymidine and hypoxanthine were present in the extracellular milieu. Our current findings suggest for the first time that metformin can function as an antifolate chemotherapeutic agent that induces the ATM/AMPK tumor suppressor axis secondarily following the alteration of the carbon flow through the folate-related one-carbon metabolic pathways.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom