z-logo
open-access-imgOpen Access
Spontaneous inactivating p53 mutations and the “selfish cell”
Author(s) -
Steven Sorscher,
Aubrey E. Hill,
Roger Belizaire,
Eric J. Sorscher
Publication year - 2011
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.100294
Subject(s) - mutation , genetics , computer science , cancer research , computational biology , biology , gene
Odell et al. reported in Aging that murine embryo fibroblasts (MEFs) undergo p53 mutations and subsequent immortalizations in culture. This “release from cell cycle arrest” occurs in murine fibroblasts with a humanized or murine WT p53 [1]. The authors also noted that the cultured cells had frequently sustained a mutation matching a human tumor p53 mutation. Jang, et al. also reported spontaneous “immortalization and tumorigenic transformation” of human keratinocytes associated with p53 inactivating mutations [2]. Odell's remarkable findings are of great interest to us and support a recently proposed hypothesis for tumorigenesis. We and others have proposed that cells seek to survive, in a Darwinian sense [3, 4, 5]. Specifically we have presented evidence to suggest that while WT p53 might primarily function as the “guardian of the genome” (inducing cells to undergo apoptosis or cell cycle arrest under stress), the WT p53 gene sequence is evolutionarily maintained such that it is susceptible to inactivating mutations and consequent cell survival (with the untoward result of tumorigenesis). The facts that these mutations occur spontaneously and frequently are the exact mutations seen in human cancers lends key support to this notion. Taken together, spontaneous mutations allowing cell survival and tumorigenesis might be referred to as the “Selfish Cell Theory” in recognition of Dawkin's The Selfish Gene published in 1976.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom