Nutrient withdrawal rescues growth factor-deprived cells from mTOR-dependent damage
Author(s) -
Emiliano Panieri,
Gabriele Toietta,
Marina Mele,
Valentina Labate,
Sofia Chiatamone Ranieri,
Salvatore Fusco,
Valentina Tesori,
Annalisa Antonini,
Giuseppe Maulucci,
Marco De Spirito,
Tommaso Galeotti,
Giovambattista Pani
Publication year - 2010
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.100183
Subject(s) - pi3k/akt/mtor pathway , psychology , biology , microbiology and biotechnology , signal transduction
Deregulated nutrient signaling plays pivotal roles in body ageing and in diabetic complications; biochemical cascades linking energy dysmetabolism to cell damage and loss are still incompletely clarified, and novel molecular paradigms and pharmacological targets critically needed. We provide evidence that in the retrovirus-packaging cell line HEK293-T Phoenix, massive cell death in serum-free medium is remarkably prevented or attenuated by either glucose or aminoacid withdrawal, and by the glycolysis inhibitor 2-deoxy-glucose. A similar protection was also elicited by interference with mitochondrial function, clearly suggesting involvement of energy metabolism in increased cell survival. Oxidative stress did not account for nutrient toxicity on serum-starved cells. Instead, nutrient restriction was associated with reduced activity of the mTOR/S6 Kinase cascade. Moreover, pharmacological and genetic manipulation of the mTOR pathway modulated in an opposite fashion signaling to S6K/S6 and cell viability in nutrient-repleted medium. Additionally, stimulation of the AMP-activated Protein Kinase concomitantly inhibited mTOR signaling and cell death, while neither event was affected by overexpression of the NAD+ dependent deacetylase Sirt-1, another cellular sensor of nutrient scarcity. Finally, blockade of the mTOR cascade reduced hyperglycemic damage also in a more pathophysiologically relevant model, i.e. in human umbilical vein endothelial cells (HUVEC) exposed to hyperglycemia. Taken together these findings point to a key role of the mTOR/S6K cascade in cell damage by excess nutrients and scarcity of growth-factors, a condition shared by diabetes and other ageing-related pathologies.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom