z-logo
open-access-imgOpen Access
The choice between p53-induced senescence and quiescence is determined in part by the mTOR pathway
Author(s) -
Lioubov G. Korotchkina,
Olga V. Leontieva,
Elena I. Bukreeva,
Zoya N. Demidenko,
Andrei V. Gudkov,
Mikhail V. Blagosklonny
Publication year - 2010
Publication title -
aging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 90
ISSN - 1945-4589
DOI - 10.18632/aging.100160
Subject(s) - senescence , pi3k/akt/mtor pathway , microbiology and biotechnology , cell cycle checkpoint , biology , gene knockdown , regulator , cancer research , cell cycle , dna damage , cell culture , cell , signal transduction , dna , genetics , gene
Transient induction of p53 can cause reversible quiescence and irreversible senescence. Using nutlin-3a (a small molecule that activates p53 without causing DNA damage), we have previously identified cell lines in which nutlin-3a caused quiescence. Importantly, nutlin-3a caused quiescence by actively suppressing the senescence program (while still causing cell cycle arrest). Noteworthy, in these cells nutlin-3a inhibited the mTOR (mammalian Target of Rapamycin) pathway, which is known to be involved in the senescence program. Here we showed that shRNA-mediated knockdown of TSC2, a negative regulator of mTOR, partially converted quiescence into senescence in these nutlin-arrested cells. In accord, in melanoma cell lines and mouse embryo fibroblasts, which easily undergo senescence in response to p53 activation, nutlin-3a failed to inhibit mTOR. In these senescence-prone cells, the mTOR inhibitor rapamycin converted nutlin-3a-induced senescence into quiescence. We conclude that status of the mTOR pathway can determine, at least in part, the choice between senescence and quiescence in p53-arrested cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom