Using Horizontal Wells for Chemical EOR: Field Cases
Author(s) -
Eric Delamaide
Publication year - 2017
Publication title -
georesursy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.291
H-Index - 5
eISSN - 1608-5078
pISSN - 1608-5043
DOI - 10.18599/grs.19.3.3
Subject(s) - petroleum engineering , geology , field (mathematics) , petrology , mathematics , pure mathematics
Primary production of heavy oil in general only achieves a recovery of less than 10% OOIP. Waterflooding has been applied for a number of years in heavy oil pools and can yield much higher recovery but the efficiency of the process diminishes when viscosity is above a few hundreds cp with high water-cuts and the need to recycle significant volumes of water; in addition, significant quantities of oil are still left behind. To increase recovery beyond that, Enhanced Oil Recovery methods are needed. Thermal methods such as steam injection or Steam-Assisted Gravity Drainage (SAGD) are not always applicable, in particular when the pay is thin and in that case chemical EOR can be an alternative. The two main chemical EOR processes are polymer and Alkali-Surfactant-Polymer (ASP) flooding. The earlier records of field application of polymer injection in heavy oil fields date from the 1970’s however; the process had seen very few applications until recently. ASP in heavy oil has seen even fewer applications. A major specificity of chemical EOR in heavy oil is that the highly viscous oil bank is difficult to displace and that injectivity with vertical wells can be limited, particularly in thin reservoirs which are the prime target for chemical EOR. This situation has changed with the development of horizontal drilling and as a result, several chemical floods in heavy oil have been implemented in the past 10 years, using horizontal wells. The goal of this paper is to present some of the best documented field cases. The most successful and largest of these is the Pelican Lake polymer flood in Canada, operated by CNRL and Cenovus which is currently producing over 60,000 bbl/d. The Patos Marinza polymer flood by Bankers Petroleum in Albania and the Mooney project (polymer, ASP) by BlackPearl (again in Canada) are also worthy of discussion.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom