z-logo
open-access-imgOpen Access
HYDROXYETHYL METHACRYLATE BASED NANOCOMPOSITE HYDROGELS WITH TUNABLE PORE ARCHITECTURE
Author(s) -
Erhan Bat
Publication year - 2016
Publication title -
journal of the turkish chemical society section a chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.179
H-Index - 6
ISSN - 2149-0120
DOI - 10.18596/jotcsa.99480
Subject(s) - self healing hydrogels , methacrylate , monomer , interconnectivity , chemical engineering , polymerization , chemistry , polymer chemistry , (hydroxyethyl)methacrylate , radical polymerization , polymer , materials science , organic chemistry , engineering , artificial intelligence , computer science
Hydroxyethyl methacrylate (HEMA) based hydrogels have found increasing number of applications in areas such as chromatographic separations, controlled drug release, biosensing, and membrane separations. In all these applications, the pore size and pore interconnectivity are crucial for successful application of these materials as they determine the rate of diffusion through the matrix. 2-Hydroxyethyl methacrylate is a water soluble monomer but its polymer, polyHEMA, is not soluble in water. Therefore, during polymerization of HEMA in aqueous media, a porous structure is obtained as a result of phase separation. Pore size and interconnectivity in these hydrogels is a function of several variables such as monomer concentration, cross-linker concentration, temperature etc . In this study, we investigated the effect of monomer concentration, graphene oxide addition or clay addition on hydrogel pore size, pore interconnectivity, water uptake, and thermal properties. PolyHEMA hydrogels have been prepared by redox initiated free radical polymerization of the monomer using ethylene glycol dimethacrylate as a cross-linker. As a nanofiller, a synthetic hectorite Laponite® XLG and graphene oxide were used. Graphene oxide was prepared by the Tour Method. Pore morphology of the pristine HEMA based hydrogels and nanocomposite hydrogels were studied by scanning electron microscopy. The formed hydrogels were found to be highly elastic and flexible. A dramatic change in the pore structure and size was observed in the range between 22 to 24 wt/vol monomer at 0.5 % of cross-linker. In this range, the hydrogel morphology changes from typical cauliflower architecture to continuous hydrogel with dispersed water droplets forming the pores where the pores are submicron in size and show an interconnected structure. Such controlled pore structure is highly important when these hydrogels are used for solute diffusion or when there’s flow through monolithic hydrogels. These robust hydrogels may be useful in separation and biomedical applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom